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Summary: The chiral reagents (+)- and (-)-(IpchBOTf are used to control the aldol addition reactions of 
ethylketone 3 with methacrolein. Under suitable conditions, racemic 3 can be converted into the SS aldol 
adduct (+)-4 in Z95% ee with >95% diastereoselectivity. Resolved starting ketone (+)-3 can be recovered in 
295% ee. Adduct (+)-4 was converted into the rifamycin S segment (-)-2 via stereoselective ketone reduction 
and hydroboration. 

Rifamycin S, an important member of the ansamycin class of macrolide antibiotics, has been the subject of 

intense synthetic interest.1 Following on from the landmark total synthesis reported by Kishi and coworkers in 1980,24b 

several syntheses of the polypropionate ansa bridge have been completed, which feature different strategies for controlling 

this sequence of eight contiguous stereogenic centres. 1.2~ We now report a short asymmetric synthesis of 2, a C19-C27 

segment of rifamycin S used in the Kishi synthesis, based on ethylketone aldol reactions mediated by the a-pinene 

derived boron reagents (-)-1 and (+)-1.4 As part of this synthesis, we also describe the novel use of these chiral reagents 

for the kinetic resolution5 of racemic ethylketones. 
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Our retrosynthetic analysis for 2, as shown in Scheme 1, requires control of the double aldol addition of 

diethylketone with methacrolein to give the adduct 4 (R=TBS) in enantiomerically enriched form. We have already 

described an enantioselective synthesis of the ketone 5 (Scheme 2) using the reagents (-)-1 and (+)-1 to control the 

firs@ and secondat’ aldol reaction with methacmlein and acetaldehyde, respectively. This chemistry is easily adapted to 

the synthesis of 4 by using methacmlein twice. 
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Enolisation of (-)-3 (90% ee) by (+)-1 (Et3N, CH2C12, OT, 5 h), followed by aldol addition to meth- 

acmlein (OT, 12 h; H202). gave the SS (i.e. 1,2-syn-2,4-syn) isomer (+)-46 (93% ee)7 with 97% diastereoselectivity in 

79% yield. HPLC analysis of the crude aldol mixture showed the formation of 2% SA (1,2-syn-2,4-unri) and cu 1% of 

the 1,2-u& isomers. Here the z-face selectivity of the Z-enolate is enhanced by the matched influence of the chiral ligands 

on boron. If the mismatched combination was used with (-)-1, the diastereoselectivity towards (+)-4 was reduced to 64% 

with a significant amount (29%) of the SA isomer (+)-6 now obtained from attack on the opposite enolate a-face. 

Scheme 2 
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Kinetic resolution5 should be possible in the aldol reaction of the rucemic ethylketone 3 using (+)-1 

(Scheme 3), if the matched enolate system 7, which reacts with high x-face selectivity (ca 5O:l SS:SA), was to react 

significantly faster with the aldehyde than the mismatched enolate 8, which reacts with low x-face selectivity (ca 2:l 

SS:SA). At cu 50% conversion, this should then selectively give the desired aldol product (+)-4 via the fast-reacting 

enolate 7. At the same time, recovered unreacted ketone should be enriched in (+)3 from the slow-reacting enolate 8. 
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Table Kinetic resolution of ketone (k)-3 in aldol reaction with methacrolein using boron triflates (-)-1 and (+)-1 with 

Et3N in CH$12. Enolisation (0°C 4 h) and oxidative workup (H2@, pH7 buffer/MeOH) conditions are standard 

product composition (SS=4 and SA=6)b recovered 3f 

reagent aldehyde aldol conditions 

entry (equiv.)(l equiv. tirne/temp (‘C) % yield 4 % ee 4C ([a]# SS:SAe % recovery % ee3g (r0t.h ) 

1 (-)-1 (1.3) 0.4 14 h/O; 2.5 h/20 24 91 28:l 45 45 (-) 

2 (-)-1 (1.5) 0.5 19 h/O; 2 h/20 34 89 291 40 70 (-) 

3 (-)-1 (1.5) 1.5 2h/o; 18 h/20 41 5.5 (-33.7) 27:l 20 93 (-) 

4 (+)-1 (2.0) 0.5 17 h/Q 3.5 h/20 36 295 (+62.1) 45:ii 51 40 (+) 

5 (+)-1 (1.5) 1.5 2 h/Q 18 h’20 48 55 (+36.0) 23:l 25 195 (+) 

“As a ca 1M solution in hexane. b Isolated aidol adducts after chromatography. c Determined from analysis of Mosher ester. 
dMmured in CHC13. e Ratio of 4:6 by HPLC. f Recovered 3 after chromatography. g Determined from analysis of Mosher ester 

and/or chiml shift lH-NMR using Eu(hfch on free fi-hydroxyketone after TBS deprotedon. h Sign of rotation of recovered 3 in 
CHC13. i 4% of 1,2-0.~dis0mers were obtained. 

Using the reagents (-)-1 (entries l-3) and (+)-1 (entries 4-5), our results for the aldol reaction of (&)-3s 

with methacrolein am shown in the Table. The conversion was controlled by varying the amount of reagent and aldehyde 

used, together with the aldol reaction temperature. To avoid any complication from kinetic resolution in the enolisation 

step itself,9 we employed excess reagent (1.3-2.0 equiv.) to ensure complete conversion to the enolates. In one run using 

1.3 equiv. of (->l for enolisation and 0.4 equiv. of aldehyde (entry l), the SS isomer (-)-4 was obtained in 91% ee with 

95% diastereoselectivity and the recovered ketone (-)-3 in 45% ee.6 Use of slightly more reagent and aldehyde gave 

increased conversion (entry 2), producing (-)-4 in 89% ee and providing recovered (-)-3 in 70% ee. Increasing the 

conversion further (entry 3) led to recovered ketone (-)-3 in 93% ee. Carrying out these same reactions with the 

enantiomeric reagent (+)-1 led to production of the desired adduct (+)-4 in 195% ee with high diastereoselectivity, 

SS:SA =45:1 (entry 4). Increased conversion gave recovered (+)-3 in 295% ee (entry 5), thus demonstrating essentially 

complete kinetic resolution of the ketone. 
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Scheme 4: (a) Me@HEI(OAc)3 (10 equiv.), 1:l AcOH/MeCN, 24-K. 20 h; (6) 9-BBN (6 equiv.), THF, 20°C, 3 h; NaOOH; 

(c) (MeO)2CMe2. CH2C12, PPTS, 20°C, 2 h: (4 ‘BuCOCt, pyridine, CH2C12.0 + 20°C. 3 h; (c) TBAF, THF, 20°C, 1 h; v) 

(MeO)2CMe2. CH2Cl2, PPTS, 20°C 3 h; (g) LiAlH4. Et20,2O“C. 2 h; (h) ‘BuPh2SiC1, DMAP, imidazole, CH2C12,2WC, 

0.5 h. 

Final conversion of (+)-4 to the Cl9-C27 rifamycin S segment 2 (Scheme 4) required stereoselective 

ketone reduction and alkene hydration. This sequence of steps was carried out on material of 91% ee. The reduction, 4 + 

9, was achieved with 97% diasterecselectivity (HPLC analysis) in 87% yield by using MedN.HB(OAc)s (1:l 
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MeCN/AcOH, 20°C).l* Hydroboration of the diol9it using excess 9-BBN (THF, 20°C) then gave predominantly (80% 

diastereoselectivity) one tetraol isomer 10 with stereochemistry as predicted by the work of Still and Banish.12 This 

sequence of seven stereogenic centres, therefore, can be simply and quickly set up in five steps from diethylketone with 

72% stereoselectivity. Straightforward protecting group manipulation (five steps) was fmally used to convert 10 into (-)- 

2, [a]D2*= -6.3’(c 2.1, CHC13; 91% ee), 11 which had lH-NMR and specific rotation data in agreement with those 

previously reported by Kishi and coworkers. 2~ In addition, the derived tert-butyldiphenylsilyl ether 11 was found to have 

spectroscopic data in agreement with Kishik and Ziegler et al, 30 thus confirming all of our stereochemical assignments. 
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